Sedimentation impacts on deep-sea macrofauna communities of the Chatham Rise, New Zealand **Campbell Murray**¹, Ashley Rowden^{1,2}, Daniel Leduc², Scott Nodder², Rachel Hale², Malcolm Clark² (McClain, 2010 - 1. Victoria University of Wellington - 2. National Institute of Water and Atmospheric Research #### The issue: Sedimentation Deep sea mining Bottom trawling Resilience of benthic communities to the effects of sedimentation ("ROBES") ## Why look at macrofauna? - Animals within the sediment typically retained on a 300 micron sieve - Can be more sensitive to disturbance than larger epifauna - Play a role in nutrient recycling and facilitate bacterial function through bioturbation - Relationships with sediment variables such as total organic carbon/matter, chlorophyll a concentrations and sediment grain size variation # Survey area: Chatham Rise ## Multicore sampling design #### Treatment Disturbed – Physically run over/ subjected to sedimentation Undisturbed – Subjected to lowlevel sedimentation Sampling period Before disturbance After disturbance One year after disturbance (June 2020) ### Results: Univariate abundance ## Results: Multivariate abundance # Results: Multivariate abundance | Groups | Sampling | t | P (perm) | |--------------|-------------------|------------------|-------------------------| | | period level | | | | D, U | Р | 0.95233 | 0.5284 | | D, U | Α | 2.1314 | 0.0023 | | D, U | Ο | 0.58827 | 0.9421 | | | | | | | Groups | Treatment | t | P (perm) | | | | | | | | level | | | |
Р, А | level
D | 1.8108 | 0.0118 | | P, A
P, O | _ | 1.8108
1.2686 | 0.0118 0.1035 | | · | D | | | | P, O | D
D | 1.2686 | 0.1035 | | P, O
A, O | D
D
D | 1.2686
1.8382 | 0.1035
0.0097 | ## Which taxa were most impacted? #### <u>Polychaetes</u> Disturbed: 61 to 32 per core Undisturbed: 60 to 50 per core #### **Cumaceans** Undisturbed: 1 to 0.05 per core Good discriminator #### <u>Ostracods</u> Good discriminator # Macrofauna/sediment relationships after disturbance | Physical | Biogeochemical | Biological | Other | |--|--|---------------------|--| | % Clay % Coarse Silt % Fine Silt % Medium Sand % Medium Silt % Very Coarse Silt % Very Fine Sand % Very Fine Silt Mean grain size Sorting Void ratio % H₂O | % Total organic matter Chlorophyll a (µg/g) Phaeopigments (µg/g) % Particulate nitrogen % Particulate organic carbon Chla:Phaeo C:N Mass Ratio | Bacterial abundance | Depth (m) Latitude Longitude | # Scaling up to a commercial mine? | | ROBES | Commercial mine | |----------|---|---------------------| | Duration | 4 days | 300 days/year | | Area | 0.316 km ² | 300 km ² | | Impacts | Reduced abundance Altered community structure | ??? | | Recovery | Yes, after one year | ??? | - Will these impacts be more severe for commercial-scale mining? - Will communities recover from those impacts?