Sedimentation impacts on deep-sea macrofauna communities of the Chatham Rise, New Zealand

Campbell Murray¹, Ashley Rowden^{1,2}, Daniel Leduc², Scott Nodder², Rachel Hale², Malcolm Clark²

(McClain, 2010

- 1. Victoria University of Wellington
- 2. National Institute of Water and Atmospheric Research

The issue: Sedimentation

Deep sea mining
Bottom trawling

Resilience of benthic communities to the effects of sedimentation ("ROBES")

Why look at macrofauna?

- Animals within the sediment typically retained on a 300 micron sieve
- Can be more sensitive to disturbance than larger epifauna
- Play a role in nutrient recycling and facilitate bacterial function through bioturbation
- Relationships with sediment variables such as total organic carbon/matter, chlorophyll a concentrations and sediment grain size variation

Survey area: Chatham Rise

Multicore sampling design

Treatment

Disturbed – Physically run over/ subjected to sedimentation

Undisturbed – Subjected to lowlevel sedimentation

Sampling period

Before disturbance

After disturbance

One year after disturbance (June 2020)

Results: Univariate abundance

Results: Multivariate abundance

Results: Multivariate abundance

Groups	Sampling	t	P (perm)
	period level		
D, U	Р	0.95233	0.5284
D, U	Α	2.1314	0.0023
D, U	Ο	0.58827	0.9421
Groups	Treatment	t	P (perm)
	level		
 Р, А	level D	1.8108	0.0118
P, A P, O	_	1.8108 1.2686	0.0118 0.1035
·	D		
P, O	D D	1.2686	0.1035
P, O A, O	D D D	1.2686 1.8382	0.1035 0.0097

Which taxa were most impacted?

<u>Polychaetes</u>

Disturbed: 61 to 32 per core

Undisturbed: 60 to 50 per core

Cumaceans

Undisturbed: 1 to 0.05 per core

Good discriminator

<u>Ostracods</u>

Good discriminator

Macrofauna/sediment relationships after disturbance

Physical	Biogeochemical	Biological	Other
 % Clay % Coarse Silt % Fine Silt % Medium Sand % Medium Silt % Very Coarse Silt % Very Fine Sand % Very Fine Silt Mean grain size Sorting Void ratio % H₂O 	 % Total organic matter Chlorophyll a (µg/g) Phaeopigments (µg/g) % Particulate nitrogen % Particulate organic carbon Chla:Phaeo C:N Mass Ratio 	Bacterial abundance	 Depth (m) Latitude Longitude

Scaling up to a commercial mine?

	ROBES	Commercial mine
Duration	4 days	300 days/year
Area	0.316 km ²	300 km ²
Impacts	Reduced abundance Altered community structure	???
Recovery	Yes, after one year	???

- Will these impacts be more severe for commercial-scale mining?
 - Will communities recover from those impacts?

