THE EFFECTS OF SEDIMENTATION IN THE DEEP SEA

Emerging results from the Chatham Rise on the impacts of seabed disturbance

<u>Malcolm Clark</u>¹, Scott Nodder¹, Joe O'Callaghan¹, Daniel Leduc¹, Vonda Cummings¹, Chris Hickey¹, Jenny Beaumont¹, Charine Collins¹, Chris Eager^{1,3}, Rachel Hale¹, Valeria Mobilia², Campbell Murray², Lee Rauhina-August¹, Ashley Rowden^{1,2}, Rob Stewart¹, Di Tracey¹

NZMSS Conference, 5-8 July 2021, Tauranga

Climate, Freshwater & Ocean Science

1

Background

- A large proportion of the offshore deep seas around New Zealand is soft sediment, which can be easily disturbed by human activities
- Impacts on biological communities have been studied in near-shore coastal environments, but little information exists on tolerances of fauna from deeper shelf waters
- Motivation for this work was twofold:
 - interest in offshore mining, uncertainty of the actual effects of sediment plumes on benthos (e.g. EPA decisions for TransTasman Resources and Chatham Rock Phosphate);
 - increased awareness of fisheries impacts (MSC certification of bottom trawl fisheries, e.g. hoki and orange roughy).
- An MBIE 5 year Endeavour project 2016-2021
 - ROBES: Resilience Of deep-sea Benthos to the Effects of Sedimentation

Objectives:

- Principal objective
 - to determine impacts of, and measure recovery of benthic communities over time from, sedimentation effects
- Four key questions:
 - Can we determine and quantify <u>effects</u> of settled and suspended sediment from plumes on benthic communities in situ?
 - Are some communities more <u>resilient</u> than others to various levels of particle sizes and concentrations?
 - Can <u>thresholds</u> of acute or sub-lethal levels of sedimentation be defined where impacts upon benthic communities become 'ecologically significant'?
 - Can impacted benthic communities recover in the short to medium term?

3

The Approach

- Two components
- Field disturbance experiment
 - Direct physical disturbance, monitor plume, sedimentation rates and composition, biological effects.
 - Three surveys:
 - Survey 1 (2018): baseline, disturbance, monitor
 - Survey 2 and 3 (2019, 2020): monitoring
 - Impacts over days-weeks, 1 year, 2 years
 - Chatham Rise survey area (400-500m)
- Laboratory sedimentation experiments
 - · coral and sponge species in tanks
 - Manipulate sedimentation from low to high
 - Monitor over weeks to months

Field survey

- Disturbance
 - NOAA Benthic Disturber (2018) NIWA "SCIP" (plough) (2019)
 - Multiple transects run, >30 hr periods
 - Area termed "Butterknife
- Monitoring survey
 - Before, After (1 week), After (1 year, some 2 year))
- Oceanography (and water column)
 - Ocean glider, CTD, acoustics, ADCP moorings
- Sedimentation
 - Benthic landers, Sediment trap moorings, multicorer, acoustics
- Biological communities
 - · Towed camera, multicorer, beam trawl, sled

5

Laboratory-based experiments

- Experiments in NIWA's Marine Environmental Manipulation Facility (Wellington)
- Live-capture of specimens during voyages (onboard aquaria)
- Two species

Knobbly sandpaper sponge (*Ecionemia novaezelandiae*), stony coral (*Goniocorella dumosa*)

- Treatments
 - Control temperature, pH, water flow; based on in situ environmental data
 - Introduce various suspended sediment concentrations (0, 50, 100, 500 mg/l)
- · Measure responses
 - survival
 - metabolism (respiration)
 - feeding activity (clearance rates, particle size)
 - · structural damage
 - behaviour (mucous production/opening of valves)

Work in progress

- Biological community responses
 - Infauna-macrofauna, meiofauna, bacteria (based on multicore samples)
 - Epifauna (largely MEMF experiments)
 - Genetic/microbiome responses to suspended sediment (linked to MEMF experiments)
- Sedimentation experiments
 - Sediment erosion, elutriation, sediment capping data analyses
 - · Sediment community respiration analyses
 - DGT sample processing (trace metals)
- Sediment samples
 - Multicorer (pre- & post-disturbance, 3 sites) grain size, physico-chemical characteristics (TOM, water content, CaCo3, POCPN/isotopes, chl/phaeopigments)
 - · Benthic lander data (Aquascat, Aqualogger, sediment sample calibration, sediment analyses (as per MUC), ADCP
- Water column dynamics
 - CTD water samples (nutrients, chl/phaeopigments, DIC/alkalinity, Ecotriplet & Aqualogger (DTIS as well))
 - Optics data-glider & CTD (cdom, fluorescence), DIC, DOC, water chemistry
 - Benthic Boundary layer (thickness, stability)-glider data
- Acoustic data
 - MBES and Fisheries sounders multifrequency (pre- and post-disturbance transects)
- Seafloor imagery
 - · Natural sedimentation levels
 - Persistence of Disturber marks

7

Illustrations-a range of some results

- <u>Natural variability</u>-necessary to separate natural from human-induced change
- <u>Sediment cloud</u> what could we measure in terms of suspended sediment and settled sediment?
- Sediment experiments effects of capping with fine sediment
- Infauna responses to disturbance of infauna-do they recover?
- <u>Experimental exposure</u> of corals-is there a threshold of suspended sediment when impact is serious?

Natural conditions

- Oceanography
 - Strong surface water variability, differed 2018-2019 balance of STW/SAW
- Currents
 - Flow strength and direction seasonal, with strong tidal cycle, differed 2018 and 2019
- Flux to seafloor
 - Seasonal variability, strong Feb & May 2020

9

Sediment Plume

- Water column
 - · Glider turbidity, plume 150m high
 - CTD gas measurements, N₂0 spike post disturbance (max. 100m above seabed, but to surface)
- · Benthic landers
 - Turbidity spikes associated with disturbance (both from Disturber as well as repeat multicoring)

• Flux levels above ambient (2-3 times)

Sedimentation-onboard experiments

- Sediment capping
 - What is effect of blanketing seabed with fines?
 - 5mm, marked reduction in DO penetration
 - Development of anoxic sediments

11

Benthic Infauna

- Multicore samples Before (Pre-), after (1 week Post), and After (1 year Post)
- Meio- and macro-fauna results
 - Meio: segregation of 0-1 cm and 1-5 cm communities, return to pre-disturbance 1 year after more in 0-1 cm than 1-5 cm (depth effect)
 - Macro: illustration of decrease in abundance after disturbance, but recovery 1 year (see talk by Campbell Murray on Thursday, Stressors session)

Laboratory experiments

- Stony coral Goniocorella dumosa
- Continuous exposure to suspended sediment for 4 weeks), 0, 50, 100, 500 mg/l
- Marked increase in <u>tissue loss of</u> <u>coral polyps</u> with time especially at 500 mg/l
- Respiration (measured over 2 hrs) showed an initial shut-down (day 5) at 500 mg/l, but then slow ?acclimatisation/sediment ingestion (under evaluation) towards end of experiment

13

Conclusions

- Programme has collected a huge amount of data across a wide range of environmental factors related to sedimentation and sediment effects
- Highly variable & dynamic environment on Chatham Rise-both spatially and temporally, with communities faced with persistent, occasionally high sediment loading.
- Shallow physical disturbance of Chatham Rise sediments generated a minor sediment plume, with marked effects on near-bed sediment fluxes and water column characteristics
- Impact on infauna was clear, but relatively quick recovery (within/at 1 year).
- Experimental results more informative for epifauna, showing impacts at high and prolonged suspended sediment levels (100 and 500 mg/l)
- Together results can provide a suite of information to assist management of human activities creating sedimentation in the deep sea.

ACKNOWLEDGEMENTS

- We acknowledge funding from the Ministry of Business, Innovation and Employment (contract CO1X1614)
- The support and advice of the project End-User Advisory Group
- The ROBES team includes:
 - <u>Biology:</u> Malcolm Clark, Ashley Rowden, Daniel Leduc, Steve George, Rob Stewart, Di Tracey, Alan Hart, Campbell Murray (VUW)
 - Oceanography: Joanne O'Callaghan, Charine Collins, Mark Hadfield, Cliff Law
 - <u>Sedimentology</u>: Scott Nodder, Peter Gerring, Chris Hickey, Chris Eager, Rachel Hale,
 Conrad Pilditch (UoW), Grace Frontin-Rollett
 - <u>Laboratory experiments</u>: Vonda Cummings, Jenny Beaumont, James Bell (VUW), Valeria Mobilia (VUW), Di Tracey, Neill Barr, Graeme Moss, Jaret Bilewitch, Sarah Seabrook
 - Acoustics: Arne Pallentin, Yoann Ladroit
 - Engagement and Communication: Lee Rauhina-August, Di Tracey
- Vessel time was provided by MBIE through the Tangaroa Advisory Group

